
http://code.google.com/p/google-guice/

Java on Guice
Guice 1.0 User's Guide

Guice (pronounced "juice") is an ultra-lightweight, next-generation dependency
injection container for Java 5 and later.

Introduction

The enterprise Java community exerts a lot of effort toward wiring objects
together. How does your web application get access to a middle tier service, or
your service to the logged in user or transaction manager? You'll find many
general and specific solutions to this problem. Some rely on patterns. Others use
frameworks. All result in varying degrees of testability and some amount of
boilerplate code. You'll soon see that Guice enables the best of all worlds: easy
unit testing, maximal flexibility and maintainability, and minimal repetition.

We'll use an unrealistically simple example to illustrate the benefits of Guice over
some classic approaches which you're probably already familiar with. The
following example is so simple in fact that, even though it will show immediate
benefits, we won't actually do Guice justice. We hope you'll see that as your
application grows, Guice's benefits accelerate.

In this example, a client depends on a service interface. This could be any
arbitrary service. We'll just call it Service.

public interface Service {

 void go();
}

http://code.google.com/p/google-guice/

We have a default implementation of this service which the client should not
depend directly on. If we decide to use a different service implementation in the
future, we don't want to go around and change all of our clients.

public class ServiceImpl implements Service {

 public void go() {

 ...

 }

}

We also have a mock service which we can use in unit tests.

public class MockService implements Service {

 private boolean gone = false;

 public void go() {
 gone = true;
 }

 public boolean isGone() {
 return gone;
 }
}

Plain Old Factories

Before we discovered dependency injection, we mostly used the factory pattern.
In addition to the service interface, you have a service factory which provides the
service to clients as well as a way for tests to pass in a mock service. We'll make
the service a singleton so we can keep this example as simple as possible.

public class ServiceFactory {

 private ServiceFactory() {}

 private static Service instance = new ServiceImpl();

 public static Service getInstance() {
 return instance;
 }

 public static void setInstance(Service service) {
 instance = service;
 }
}

Our client goes directly to the factory every time it needs a service.

public class Client {

 public void go() {
 Service service = ServiceFactory.getInstance();
 service.go();
 }
}

The client is simple enough, but the unit test for the client has to pass in a mock
service and then remember to clean up afterwards. This isn't such a big deal in
our simple example, but as you add more clients and services, all this mocking
and cleaning up creates friction for unit test writing. Also, if you forget to clean up
after your test, other tests may succeed or fail when they shouldn't. Even worse,
tests may fail depending on which order you run them in.

public void testClient() {
 Service previous = ServiceFactory.getInstance();
 try {
 final MockService mock = new MockService();
 ServiceFactory.setInstance(mock);
 Client client = new Client();
 client.go();
 assertTrue(mock.isGone());
 }
 finally {
 ServiceFactory.setInstance(previous);
 }
}

Finally, note that the service factory's API ties us to a singleton approach. Even if
getInstance() could return multiple instances, setInstance() ties our hands.
Moving to a non-singleton implementation would mean switching to a more

complex API.

Dependency Injection By Hand

The dependency injection pattern aims in part to make unit testing easier. We
don't necessarily need a specialized framework to practice dependency injection.
You can get roughly 80% of the benefit writing code by hand.

While the client asked the factory for a service in our previous example, with
dependency injection, the client expects to have its dependency passed in. Don't
call me, I'll call you, so to speak.

public class Client {

 private final Service service;

 public Client(Service service) {
 this.service = service;
 }

 public void go() {
 service.go();
 }
}

This simplifies our unit test considerably. We can just pass in a mock service and
throw everything away when we're done.

public void testClient() {
 MockService mock = new MockService();
 Client client = new Client(mock);
 client.go();
 assertTrue(mock.isGone());
}

We can also tell from the API exactly what the client depends on.

Now, how do we connect the client with a service? When implementing
dependency injection by hand, we can move all dependency logic into factory
classes. This means we need a factory for our client, too.

public static class ClientFactory {

 private ClientFactory() {}

 public static Client getInstance() {
 Service service = ServiceFactory.getInstance();
 return new Client(service);
 }
}

Implementing dependency injection by hand requires roughly the same number
of lines of code as plain old factories.

Dependency Injection with Guice

Writing factories and dependency injection logic by hand for every service and
client can become tedious. Some other dependency injection frameworks even
require you to explicitly map services to the places where you want them
injected.

Guice aims to eliminate all of this boilerplate without sacrificing maintainability.

With Guice, you implement modules. Guice passes a binder to your module, and
your module uses the binder to map interfaces to implementations. The following
module tells Guice to map Service to ServiceImpl in singleton scope:

public class MyModule implements Module {
 public void configure(Binder binder) {
 binder.bind(Service.class)
 .to(ServiceImpl.class)
 .in(Scopes.SINGLETON);
 }
}

A module tells Guice what we want to inject. Now, how do we tell Guice where we
want it injected? With Guice, you annotate constructors, methods and fields with
@Inject.

public class Client {

 private final Service service;

 @Inject
 public Client(Service service) {
 this.service = service;
 }

 public void go() {
 service.go();
 }
}

The @Inject annotation makes it clear to a programmer editing your class which
members are injected.

For Guice to inject Client, we must either directly ask Guice to create a Client
instance for us, or some other class must have Client injected into it.

Guice vs. Dependency Injection By Hand

As you can see, Guice saves you from having to write factory classes. You don't
have to write explicit code wiring clients to their dependencies. If you forget to
provide a dependency, Guice fails at startup. Guice handles circular dependencies
automatically.

Guice enables you to specify scopes declaratively. For example, you don't have to
write the same code to store an object in the HttpSession over and over.

In the real world, you often don't know an implementation class until runtime.
You need meta factories or service locators for your factories. Guice addresses
these problems with minimal effort.

When injecting dependencies by hand, you can easily slip back into old habits and
introduce direct dependencies, especially if you're new to the concept of
dependency injection. Using Guice turns the tables and makes doing the right
thing easier. Guice helps keep you on track.

More Annotations

When possible, Guice enables you to use annotations in lieu of explicit bindings
and eliminate even more boilerplate code. Back to our example, if you need an
interface to simplify unit testing but you don't care about compile time
dependencies, you can point to a default implementation directly from your
interface.

@ImplementedBy(ServiceImpl.class)
public interface Service {
 void go();
}

If a client needs a Service and Guice can't find an explicit binding, Guice will
inject an instance of ServiceImpl.

By default, Guice injects a new instance every time. If you want to specify a
different scope, you can annotate the implementation class, too.

@Singleton
public class ServiceImpl implements Service {
 public void go() {
 ...
 }
}

Architectural Overview

We can break Guice's architecture down into two distinct stages: startup and

runtime. You build an Injector during startup and use it to inject objects at
runtime.

Startup

You configure Guice by implementing Module. You pass Guice a module, Guice
passes your module a Binder, and your module uses the binder to configure
bindings. A binding most commonly consists of a mapping between an interface
and a concrete implementation. For example:

public class MyModule implements Module {
 public void configure(Binder binder) {
 // Bind Foo to FooImpl. Guice will create a new
 // instance of FooImpl for every injection.
 binder.bind(Foo.class).to(FooImpl.class);

 // Bind Bar to an instance of Bar.
 Bar bar = new Bar();
 binder.bind(Bar.class).toInstance(bar);
 }
}

Guice can look at the classes you tell it about during this stage and any classes
those classes know about, and tell you whether or not you're missing any
dependencies. For example, in a Struts 2 application, Guice knows about all of
your actions. Guice can validate your actions and anything they transitively
depend on, and fail early if necessary.

Creating an Injector entails the following steps:

1. First, create an instance of your module and pass it to Guice.createInjector().

2. Guice creates a Binder and passes it to your module.
3. Your module uses the binder to define bindings.
4. Based on the bindings you specified, Guice creates an Injector and returns it to

you.
5. You use the injector to inject an object.

Runtime

We can now use the injector we created during the first stage to inject objects
and introspect on our bindings. Guice's runtime model consists of an injector
which contains some number of bindings.

A Key uniquely identifies each binding. The key consists of a type which the client
depends on and an optional annotation. You can use an annotation to
differentiate multiple bindings to the same type. The key's type and annotation
correspond to the type and annotation at a point of injection.

Each binding has a provider which provides instances of the necessary type. You
can provide a class, and Guice will create instances of it for you. You can give
Guice an instance of the type you're binding to. You can implement your own
provider, and Guice can inject dependencies into it.

Each binding also has an optional scope. Bindings have no scope by default, and
Guice creates a new instance for every injection. A custom scope enables you to
control whether or not Guice creates a new instance. For example, you can create
one instance per HttpSession.

Bootstrapping Your Application

The idea of bootstrapping is fundamental to dependency injection. Always
explicitly asking the Injector for dependencies would be using Guice as a service
locator, not a dependency injection framework.

Your code should deal directly with the Injector as little as possible. Instead,
you want to bootstrap your application by injecting one root object. The container
can further inject dependencies into the root object's dependencies, and so on

recursively. In the end, your application should ideally have one class (if that
many) which knows about the Injector, and every other class should expect to
have dependencies injected.

For example, a web application framework such as Struts 2 bootstraps your
application by injecting all of your actions. You might bootstrap a web service
framework by injecting your service implementation classes.

Dependency injection is viral. If you're refactoring an existing code base with a
lot of static methods, you may start to feel like you're pulling a never-ending
thread. This is a Good Thing. It means dependency injection is making your code
more flexible and testable.

If you get in over your head, rather than try to refactor an entire code base all in
one shot, you might temporarily store a reference to the Injector in a static field
somewhere or use static injection. Name the field's class clearly though:
InjectorHack and GodKillsAKittenEveryTimeYouUseMe come to mind. Keep in
mind that you you'll have to mock this class, and your unit tests will have to
install an Injector here by hand, and remember to clean up afterwards.

Binding Dependencies

How does Guice know what to inject? For starters, a Key composed of a type and
an optional annotation uniquely identifies a dependency. Guice refers to the
mapping between a key and an implementation as a Binding. An implementation
can consist of a single object, a class which Guice should also inject, or a custom
provider.

When injecting a dependency, Guice first looks for an explicit binding, a binding
which you specified using the Binder. The Binder API uses the builder pattern to
create a domain-specific expression language. Different methods return different
objects depending on the context limiting you to appropriate methods.

For example, to bind an interface Service to a concrete implementation
ServiceImpl, call:

binder.bind(Service.class).to(ServiceImpl.class);

This binding matches the following the method:

@Inject
void injectService(Service service) {
 ...
}

http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/Binder.html
http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/Binding.html
http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/Key.html

Note: In contrast to some other frameworks, Guice gives no
special treatment to "setter" methods. Guice will inject any
method with any number of parameters so long as the method
has an @Inject annotation, even if the method is in a
superclass.

DRY (Don't Repeat Yourself)

Repeating "binder" over and over for each binding can get a little tedious. Guice
provides a Module support class named AbstractModule which implicitly gives
you access to Binder's methods. For example, we could extend AbstractModule
and rewrite the above binding as:

bind(Service.class).to(ServiceImpl.class);

We'll use this syntax throughout the rest of the guide.

Annotating Bindings

If you need multiple bindings to the same type, you can differentiate the bindings
with annotations. For example, to bind an interface Service and annotation
@Blue to the concrete implementation BlueService, call:

bind(Service.class)
 .annotatedWith(Blue.class)
 .to(BlueService.class);

This binding matches the following the method:

@Inject
void injectService(@Blue Service service) {
 ...
}

Notice that while @Inject goes on the method, binding annotations such as
@Blue go directly on the parameter. The same goes for constructors. When using
field injection, both annotations can apply directly to the field, as in this example:

@Inject @Blue Service service;

Creating Binding Annotations

Where did this @Blue annotation just mentioned come from? You can create such
an annotation easily, although the standard incantation you have to use is
unfortunately a little complex:

http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/AbstractModule.html

/**
 * Indicates we want the blue version of a binding.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.PARAMETER})
@BindingAnnotation
public @interface Blue {}

Luckily, we don't really have to understand it all just to use it. But for the curious,
here's what all this boilerplate means:

• @Retention(RUNTIME) allows your annotation to be visible at runtime.
• @Target({FIELD, PARAMETER}) is a courtesy to your users; it prevents
@Blue from being applied to methods, types, local variables, and other
annotations, where it would serve no purpose.

• @BindingAnnotation is a Guice-specific signal that you wish your
annotation to be used in this way. Guice will produce an error whenever
user applies more than one binding annotation to the same injectable
element.

Annotations With Attributes

If you can get by with marker annotations alone, feel free to skip to the next
section.

You can also bind to annotation instances, i.e. you can have multiple bindings
with the same type and annotation type, but with different annotation attribute
values. If Guice can't find a binding to an annotation instance with the necessary
attribute values, it will look for a binding to the annotation type instead.

Say for example we have a binding annotation @Named with a single string
attribute value.

@Retention(RUNTIME)

@Target({ FIELD, PARAMETER })

@BindingAnnotation

public @interface Named {

 String value();

}

If we want to bind to @Named("Bob"), we first need an implementation of Named.
Our implementation must abide by the Annotation contract, specifically the
implementations of hashCode() and equals().

class NamedAnnotation implements Named {

 final String value;

 public NamedAnnotation(String value) {

 this.value = value;

 }

 public String value() {

 return this.value;

 }

 public int hashCode() {

 // This is specified in java.lang.Annotation.

 return 127 * "value".hashCode() ^ value.hashCode();

 }

 public boolean equals(Object o) {

 if (!(o instanceof Named))

 return false;

 Named other = (Named) o;

 return value.equals(other.value());

 }

 public String toString() {

 return "@" + Named.class.getName() + "(value=" + value + ")";

 }

 public Class<? extends Annotation> annotationType() {

 return Named.class;

 }

}

Now we can use this annotation implementation to create bindings to @Named.

bind(Person.class)
 .annotatedWith(new NamedAnnotation("Bob"))
 .to(Bob.class);

This may seem like a lot of work compared to string based identifiers used by
other frameworks, but keep in mind that you can't do this at all with string-based
identifiers. Also, you'll find that you get a lot of reuse out of binding annotations.

Since identifying a binding by name is such a common use case, Guice provides a
production-worthy implementation of @Named in com.google.inject.name.

Implicit Bindings

As we saw in the introduction, you don't always have to declare bindings
explicitly. In the absence of an explicit binding, Guice will try to inject and create
a new instance of the class you depend on. If you depend on an interface, Guice
will look for an @ImplementedBy annotation which points to the concrete
implementation. Take the following explicit binding to a concrete, injectable class
named Concrete for example. It basically says, bind Concrete to Concrete.
That's explicit, but also a little redundant.

bind(Concrete.class);

Removing the binding above would not affect the behavior of this class:

class Mixer {

 @Inject
 Mixer(Concrete concrete) {
 ...
 }
}

So, take your pick: explicit or brief. In the event of an error, Guice will produce
helpful messages either way.

Injecting Providers

Sometimes a client needs multiple instances of a dependency per injection. Other
times a client may not want to actually retrieve an object until some time after
the actual injection (if at all). For any binding of type T, rather than inject an
instance of T directly, you can inject a Provider<T>. Then call
Provider<T>.get() as necessary. For example:

@Inject
void injectAtm(Provider<Money> atm) {
 Money one = atm.get();
 Money two = atm.get();
 ...
}

As you can see, the Provider interface couldn't get much simpler so it doesn't
get in the way of easy unit testing.

Injecting Constant Values

When it comes to constant values, Guice gives special treatment to several types:

• Primitive types (int, char, ...)
• Primitive wrapper types (Integer, Character, ...)
• Strings
• Enums
• Classes

First, when binding to constant values of these types, you needn't specify the
type you're binding to. Guice can figure it out from the value. For example, given
a binding annotation named TheAnswer:

bindConstant().annotatedWith(TheAnswer.class).to(42);

Has the same effect as:

bind(int.class).annotatedWith(TheAnswer.class).toInstance(42);

When it comes time to inject a value of one of these types, if Guice can't find an
explicit binding for a primitive type, it will look for a binding to the corresponding
wrapper type and vice versa.

Converting Strings

If Guice still can't find an explicit binding for one of the above types, it will look
for a constant String binding with the same binding annotation and try to
convert its value. For example:

bindConstant().annotatedWith(TheAnswer.class).to("42"); //
String!

Will match:

@Inject @TheAnswer int answer;

When converting, Guice will try to look up enums and classes by name. Guice
converts a value once at startup which also means you get up front type
checking. This feature comes in especially handy if the binding value comes from
a properties file for example.

Custom Providers

Sometimes you need to create your objects manually rather than let Guice create
them. For example, you might not be able to add @Inject annotations to the
implementation class as it came from a 3rd party. In these cases, you can
implement a custom Provider. Guice can even inject your provider class. For
example:

class WidgetProvider implements Provider<Widget> {

 final Service service;

 @Inject
 WidgetProvider(Service service) {
 this.service = service;
 }

 public Widget get() {
 return new Widget(service);
 }
}

You bind Widget to WidgetProvider like so:

bind(Widget.class).toProvider(WidgetProvider.class);

Injecting the custom providers enables Guice to check the types and
dependencies up front. Custom providers can reside in any scope independent of
the scope of the objects they provide. By default, Guice creates a new provider
instance for every injection. In the above example, if each Widget needs its own
instance of Service, our code will work fine. You can specify a different scope for
a custom factory using a scope annotation on the factory class or by creating a
separate binding for the factory.

Example: Integrating With JNDI

Say for example we want to bind to objects from JNDI. We could implement a
reusable custom provider similar to the one below. Notice we inject the JNDI
Context:

package mypackage;

import com.google.inject.*;
import javax.naming.*;

class JndiProvider<T> implements Provider<T> {

 @Inject Context context;
 final String name;
 final Class<T> type;

 JndiProvider(Class<T> type, String name) {
 this.name = name;
 this.type = type;
 }

 public T get() {
 try {
 return type.cast(context.lookup(name));
 }
 catch (NamingException e) {
 throw new RuntimeException(e);
 }
 }

 /**
 * Creates a JNDI provider for the given
 * type and name.
 */
 static <T> Provider<T> fromJndi(
 Class<T> type, String name) {
 return new JndiProvider<T>(type, name);

 }
}

Thanks to generic type erasure, we must pass in the class at runtime. You could
skip this step, but tracking down type casting errors later might be a little tricky
(i.e. if JNDI returns an object of the wrong type).

We can use our custom JndiProvider to bind DataSource to an object from
JNDI:

import com.google.inject.*;
import static mypackage.JndiProvider.fromJndi;
import javax.naming.*;
import javax.sql.DataSource;

...

// Bind Context to the default InitialContext.
bind(Context.class).to(InitialContext.class);

// Bind to DataSource from JNDI.
bind(DataSource.class)
 .toProvider(fromJndi(DataSource.class, "..."));

Scoping Bindings

By default, Guice creates a new object for every injection. We refer to this as
having "no scope." You can specify a scope when you configure a binding. For
example, to inject the same instance every time:

bind(MySingleton.class).in(Scopes.SINGLETON);

As an alternative, you can use an annotation on your implementation class to
specify the scope. Guice supports @Singleton by default:

@Singleton
class MySingleton {
 ...
}

The annotation approach works with implicit bindings as well but requires that
Guice create your objects. On the other hand, calling in() works with almost any
binding type (binding to a single instance being an obvious exception) and
overrides annotations when present. in() also accepts annotations if you don't
want a compile time dependency on your scope implementation.

Specify annotations for custom scopes using Binder.bindScope(). For example,
given an annotation @SessionScoped and a Scope implementation
ServletScopes.SESSION:

binder.bindScope(SessionScoped.class, ServletScopes.SESSION);

Creating Scope Annotations

Annotations used for scoping should:

• Have a @Retention(RUNTIME) annotation so we can see the annotation at
runtime.

• Have a @Target({TYPE}) annotation. Scope annotations only apply to
implementation classes..

• Have a @ScopeAnnotation meta-annotation. Only one such annotation can
apply to a given class.

For example:

/**
 * Scopes bindings to the current transaction.
 */
@Retention(RUNTIME)
@Target({TYPE})
@ScopeAnnotation
public @interface TransactionScoped {}

Eagerly Loading Bindings

Guice can wait to load singleton objects until you actually need them. This helps
speed up development because your application starts faster and you only
initialize what you need. However, sometimes you always want to load an object
at startup. You can tell Guice to always eagerly load a singleton like so:

bind(StartupTask.class).asEagerSingleton();

We frequently use this to implement initialization logic for our application. You
can control the ordering of your initialization by creating dependencies on
singletons which Guice must instantiate first.

Injecting Between Scopes

You can safely inject objects from a larger scope into an object from a smaller
scope, or the same scope. For example, you can inject an Http session-scoped
object into an HTTP request-scoped object. However, injecting into objects with
larger scopes is a different story. For example, if you injected a request-scoped
object into a singleton, at best, you would get an error due to not running within
an HTTP request, and at worst your singleton object would always reference an
object from the first request. In these cases, you should inject a Provider<T>

instead and use it to retrieve the object from the smaller scope as necessary.
Then, you should be certain to never invoke this provider when you are outside of
T's scope (for example, when you are not servicing an HTTP request, and T is
request-scoped).

Development Stages

Guice is aware that your application goes through different stages of
development. You can tell it which stage the application is running in when you
create a container. Guice currently supports "development" and "production."
We've found that tests usually fall under one stage or the other.

During development, Guice will load singleton objects on demand. This way, your
application starts up fast and only loads the parts you're testing.

In production, Guice will load all your singleton objects at startup. This helps
catch errors early and takes any performance hits up front.

Your modules can also apply method interceptors and other bindings based on
the current stage. For example, an interceptor might verify that you don't use
your objects out of scope during development.

Intercepting Methods

Guice supports simple method interception using the AOP Alliance API. You can
bind interceptors from your modules using Binder. For example, to apply a
transaction interceptor to methods annotated with @Transactional:

import static com.google.inject.matcher.Matchers.*;

...

binder.bindInterceptor(
 any(), // Match classes.
 annotatedWith(Transactional.class), // Match methods.
 new TransactionInterceptor() // The interceptor.
);

Try to shoulder as much of the filtering as is possible on the matchers rather than
in the interceptor's body as the matching code runs only once at startup.

Static Injection

Static fields and methods make testing and reusing more difficult, but there are

http://aopalliance.sourceforge.net/

times where your only choice is to keep a static reference to the Injector.

For these situations, Guice supports injecting less accessible static members. For
example, HTTP session objects often need to be serializable to support
replication, but what if your session object depends on a container-scoped object?
We can keep a transient reference to the object, but how do we look it up again
upon deserialization?

We've found the most pragmatic solution to be static injection:

@SessionScoped
class User {

 @Inject
 static AuthorizationService authorizationService;
 ...
}

Guice never performs static injection automatically. You must use Binder to
explicitly request that the Injector inject your static members after startup:

binder.requestStaticInjection(User.class);

Static injection is a necessary evil, which makes testing more difficult. If you can
find a way to avoid using it, you'll probably be glad you did.

Optional Injection

Sometimes your code should work whether a binding exists or not. In these
cases, you can use @Inject(optional=true) and Guice can override your default
implementation with a bound implementation when available. For example:

@Inject(optional=true) Formatter formatter = new
DefaultFormatter();

If someone creates a binding for Formatter, Guice will inject an instance from
that binding. Otherwise, assuming Formatter isn't injectable itself (see Implicit
Bindings), Guice will skip the optional member.

Optional injection applies only to fields and methods, not constructors. In the
case of methods, if a binding for one parameter is missing, Guice won't inject the
method at all, even if bindings to other parameters are available.

Binding to Strings

We try to avoid using strings whenever possible as they're prone to misspellings,
not tool friendly, and so on, but using strings instead of creating custom
annotations can prove useful for quick and dirty code. For these situations, Guice

provides @Named and Names. For example, a binding to a string name like:

import static com.google.inject.name.Names.*;

...

bind(named("bob")).to(10);

Will match injection points like:

@Inject @Named("bob") int score;

Struts 2 Support

To install the Guice Struts 2 plugin with Struts 2.0.6 or later, simply include
guice-struts2-plugin-1.0.jar in your web application's classpath and select
Guice as your ObjectFactory implementation in your struts.xml file:

<constant name="struts.objectFactory" value="guice" />

Guice will inject all of your Struts 2 objects including actions and interceptors.
You can even scope your actions. You can optionally specify a Module for Guice to
install in your struts.xml file:

<constant name="guice.module" value="mypackage.MyModule"/>

If all of your bindings are implicit, you can get away without defining a module at
all.

A Counting Example

Say for example that we want to count the number of requests in a session.
Define a Counter object which will live on the session:

@SessionScoped
public class Counter {

 int count = 0;

 /** Increments the count and returns the new value. */
 public synchronized int increment() {
 return count++;
 }
}

Next, we can inject our counter into an action:

public class Count {

http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/name/Names.html
http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/name/Named.html

 final Counter counter;

 @Inject
 public Count(Counter counter) {
 this.counter = counter;
 }

 public String execute() {
 return SUCCESS;
 }

 public int getCount() {
 return counter.increment();
 }
}

Then create a mapping for our action in our struts.xml file:

<action name="Count"
 class="mypackage.Count">
 <result>/WEB-INF/Counter.jsp</result>
</action>

And a JSP to render the result:

<%@ taglib prefix="s" uri="/struts-tags" %>

<html>
 <body>
 <h1>Counter Example</h1>
 <h3>Hits in this session:
 <s:property value="count"/></h3>
 </body>
</html>

We actually made this example more complicated than necessary in an attempt
to illustrate more concepts. In reality, we could have done away with the
separate Counter object and applied @SessionScoped to our action directly.

JMX Integration

See com.google.inject.tools.jmx.

Appendix: How the Injector resolves injection requests

The injector's process of resolving an injection request depends on the bindings
that have been made and the annotations found on the types involved. Here is a

http://google-guice.googlecode.com/svn/trunk/javadoc/com/google/inject/tools/jmx/package-summary.html

summary of how an injection request is resolved:

1. Observe the Java type and the optional "binding annotation" of the element
to be injected. If the type is com.google.inject.Provider<T>, perform
resolution for the type indicated by T instead. Find a binding for this (type,
annotation) pair. If none, skip to #4.

2. Follow transitive bindings. If this binding links to another binding, follow this
edge and check again, repeating until we reach a binding which does not link
to any other binding. We are now at the most specific explicit binding for this
injection request.

3. If this binding specifies an instance or a Provider instance, we're done; use
this to fulfill the request.

4. If, at this point, the injection request used an annotation type or value, we
have failed and we produce an error.

5. Otherwise examine the Java type for this binding; if an @ImplementedBy
annotation is found, instantiate the referenced type. If a @ProvidedBy
annotation is found, instantiate the referenced provider and use it to obtain
the desired object. Otherwise attempt to instantiate the type itself.

	Introduction
	Plain Old Factories
	Dependency Injection By Hand
	Dependency Injection with Guice
	Guice vs. Dependency Injection By Hand

	More Annotations

	Architectural Overview
	Startup
	Runtime
	Bootstrapping Your Application

	Binding Dependencies
	DRY (Don't Repeat Yourself)
	Annotating Bindings
	Creating Binding Annotations
	Annotations With Attributes

	Implicit Bindings
	Injecting Providers
	Injecting Constant Values
	Converting Strings

	Custom Providers
	Example: Integrating With JNDI

	Scoping Bindings
	Creating Scope Annotations
	Eagerly Loading Bindings
	Injecting Between Scopes

	Development Stages
	Intercepting Methods
	Static Injection
	Optional Injection
	Binding to Strings
	Struts 2 Support
	A Counting Example

	JMX Integration
	Appendix: How the Injector resolves injection requests

